When you work with unsigned types, modular arithmetic (also known as "wrap around" behavior) is taking place. To understand this modular arithmetic , just have a look at these clocks:

enter image description here

9 + 4 = 1 ( 13 mod 12 ), so to the other direction it is: 1 - 4 = 9 ( -3 mod 12 ). The same principle is applied while working with unsigned types. If the result type is unsigned, then modular arithmetic takes place.


Now look at the following operations storing the result as an unsigned int:

unsigned int five = 5, seven = 7;
unsigned int a = five - seven;      // a = (-2 % 2^32) = 4294967294 

int one = 1, six = 6;
unsigned int b = one - six;         // b = (-5 % 2^32) = 4294967291

When you want to make sure that the result is signed, then stored it into signed variable or cast it to signed. When you want to get the difference between numbers and make sure that the modular arithmetic will not be applied, then you should consider using abs() function defined in stdlib.h:

int c = five - seven;       // c = -2
int d = abs(five - seven);  // d =  2

Be very careful, especially while writing conditions, because:

if (abs(five - seven) < seven)  // = if (2 < 7)
    // ...

if (five - seven < -1)          // = if (-2 < -1)
    // ...

if (one - six < 1)              // = if (-5 < 1)
    // ...

if ((int)(five - seven) < 1)    // = if (-2 < 1)
    // ...

but

if (five - seven < 1)   // = if ((unsigned int)-2 < 1) = if (4294967294 < 1)
    // ...

if (one - six < five)   // = if ((unsigned int)-5 < 5) = if (4294967291 < 5)
    // ...