For example (lesser numbers are faster),

64-bit Intel Xeon X5550 @ 2.67GHz, gcc 4.1.2 -O3

short add/sub: 1.005460 [0]
short mul/div: 3.926543 [0]
long add/sub: 0.000000 [0]
long mul/div: 7.378581 [0]
long long add/sub: 0.000000 [0]
long long mul/div: 7.378593 [0]
float add/sub: 0.993583 [0]
float mul/div: 1.821565 [0]
double add/sub: 0.993884 [0]
double mul/div: 1.988664 [0]

32-bit Dual Core AMD Opteron(tm) Processor 265 @ 1.81GHz, gcc 3.4.6 -O3

short add/sub: 0.553863 [0]
short mul/div: 12.509163 [0]
long add/sub: 0.556912 [0]
long mul/div: 12.748019 [0]
long long add/sub: 5.298999 [0]
long long mul/div: 20.461186 [0]
float add/sub: 2.688253 [0]
float mul/div: 4.683886 [0]
double add/sub: 2.700834 [0]
double mul/div: 4.646755 [0]

As Dan pointed out, even once you normalize for clock frequency (which can be misleading in itself in pipelined designs), results will vary wildly based on CPU architecture (individual ALU/FPU performance, as well as actual number of ALUs/FPUs available per core in superscalar designs which influences how many independent operations can execute in parallel -- the latter factor is not exercised by the code below as all operations below are sequentially dependent.)

Poor man's FPU/ALU operation benchmark:

#include <stdio.h>
#ifdef _WIN32
#include <sys/timeb.h>
#else
#include <sys/time.h>
#endif
#include <time.h>
#include <cstdlib>

double
mygettime(void) {
# ifdef _WIN32
  struct _timeb tb;
  _ftime(&tb);
  return (double)tb.time + (0.001 * (double)tb.millitm);
# else
  struct timeval tv;
  if(gettimeofday(&tv, 0) < 0) {
    perror("oops");
  }
  return (double)tv.tv_sec + (0.000001 * (double)tv.tv_usec);
# endif
}

template< typename Type >
void my_test(const char* name) {
  Type v  = 0;
  // Do not use constants or repeating values
  //  to avoid loop unroll optimizations.
  // All values >0 to avoid division by 0
  // Perform ten ops/iteration to reduce
  //  impact of ++i below on measurements
  Type v0 = (Type)(rand() % 256)/16 + 1;
  Type v1 = (Type)(rand() % 256)/16 + 1;
  Type v2 = (Type)(rand() % 256)/16 + 1;
  Type v3 = (Type)(rand() % 256)/16 + 1;
  Type v4 = (Type)(rand() % 256)/16 + 1;
  Type v5 = (Type)(rand() % 256)/16 + 1;
  Type v6 = (Type)(rand() % 256)/16 + 1;
  Type v7 = (Type)(rand() % 256)/16 + 1;
  Type v8 = (Type)(rand() % 256)/16 + 1;
  Type v9 = (Type)(rand() % 256)/16 + 1;

  double t1 = mygettime();
  for (size_t i = 0; i < 100000000; ++i) {
    v += v0;
    v -= v1;
    v += v2;
    v -= v3;
    v += v4;
    v -= v5;
    v += v6;
    v -= v7;
    v += v8;
    v -= v9;
  }
  // Pretend we make use of v so compiler doesn't optimize out
  //  the loop completely
  printf("%s add/sub: %f [%d]\n", name, mygettime() - t1, (int)v&1);
  t1 = mygettime();
  for (size_t i = 0; i < 100000000; ++i) {
    v /= v0;
    v *= v1;
    v /= v2;
    v *= v3;
    v /= v4;
    v *= v5;
    v /= v6;
    v *= v7;
    v /= v8;
    v *= v9;
  }
  // Pretend we make use of v so compiler doesn't optimize out
  //  the loop completely
  printf("%s mul/div: %f [%d]\n", name, mygettime() - t1, (int)v&1);
}

int main() {
  my_test< short >("short");
  my_test< long >("long");
  my_test< long long >("long long");
  my_test< float >("float");
  my_test< double >("double");

  return 0;
}